Identification of the minimal phosphoacceptor site required for in vivo activation of interferon regulatory factor 3 in response to virus and double-stranded RNA.

نویسندگان

  • Marc J Servant
  • Nathalie Grandvaux
  • Benjamin R tenOever
  • Delphine Duguay
  • Rongtuan Lin
  • John Hiscott
چکیده

The ubiquitously expressed latent interferon regulatory factor (IRF) 3 transcription factor is activated in response to virus infection by phosphorylation events that target a cluster of Ser/Thr residues, (382)GGASSLENTVDLHISNSHPLSLTSDQY(408) at the C-terminal end of the protein. To delineate the minimal phosphoacceptor sites required for IRF-3 activation, several point mutations were generated and tested for transactivation potential and cAMP-response element-binding protein-binding protein/p300 coactivator association. Expression of the IRF-3 S396D mutant alone was sufficient to induce type I IFN beta, IFNalpha1, RANTES, and the interferon-stimulated gene 561 promoters. Using SDS-PAGE and immunoblotting with a novel phosphospecific antibody, we show for the first time that, in vivo, IRF-3 is phosphorylated on Ser(396) following Sendai virus infection, expression of viral nucleocapsid, and double-stranded RNA treatment. These results demonstrate that Ser(396) within the C-terminal Ser/Thr cluster is targeted in vivo for phosphorylation following virus infection and plays an essential role in IRF-3 activation. The inability of the phosphospecific antibody to detect Ser(396) phosphorylation in lipopolysaccharide-treated cells suggests that other major pathways may be involved in IRF-3 activation following Toll-like receptor 4 stimulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interferon Resistance of Hepatitis C Virus Genotypes 1a/1b: Relationship to Structural E2 Gene Quasispecies Mutations

Hepatitis C virus (HCV) envelope glycoprotein-2 (E2) inhibits the interferon (IFN)–induced, double –stranded RNA activated protein kinase (PKR) via PKR eukaryotic initiation factor-2α phosphorylation homology domain (PePHD). Present study examined the genetic variability of the PePHD in patients receiving interferon therapy. The PePHD region from HCV genotype 1a/1b infected patients receiving I...

متن کامل

The VP35 protein of Ebola virus inhibits the antiviral effect mediated by double-stranded RNA-dependent protein kinase PKR.

The VP35 protein of Ebola virus is a viral antagonist of interferon. It acts to block virus or double-stranded RNA-mediated activation of interferon regulatory factor 3, a transcription factor that facilitates the expression of interferon and interferon-stimulated genes. In this report, we show that the VP35 protein is also able to inhibit the antiviral response induced by alpha interferon. Thi...

متن کامل

Interferon regulatory factor 3-independent double-stranded RNA-induced inhibition of hepatitis C virus replicons in human embryonic kidney 293 cells.

The treatment of human embryonic kidney 293 cells harboring a hepatitis C virus (HCV) subgenomic replicon with the double-stranded RNA (dsRNA) mimic poly(I . C) inhibits HCV RNA replication through an undefined mechanism. Interferon regulatory factor 3 (IRF 3) has been widely postulated to mediate various antiviral responses, and its role in mediating the response to dsRNA in 293 cells was exam...

متن کامل

The Full Length Hepatitis C Virus Polyprotein and Interactions with the Interferon-Beta Signalling Pathways in vitro

Background: Hepatitis C is a global health problem. The exact mechanisms by which hepatitis C virus (HCV) can evade the host immune system have become controversial. Whether HCV polyproteins modulate IFN signalling pathways or HCV proteins are responsible for such a property is the subject of interest. Therefore, an efficient baculovirus delivery system was developed to introduce the whole geno...

متن کامل

p38 MAPK activation controls the TLR3-mediated up-regulation of cytotoxicity and cytokine production in human NK cells.

Natural killer (NK) cells are a component of the innate immunity against viral infections through their rapid cytotoxic activity and cytokine production. Although the synthetic double-stranded (ds) RNA polyinosinic-polycytidylic acid (poly I:C), a mimic of a common product of viral infections, is known to rapidly up-regulate their in vivo functions, NK cell ability to directly respond to dsRNA ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 11  شماره 

صفحات  -

تاریخ انتشار 2003